161 research outputs found

    Exotic Kondo-hole band resistivity and magnetoresistance of Ce1x_{1-x}Lax_{x}Os4_4Sb12_{12} alloys

    Full text link
    Electrical resistivity measurements of non-magnetic single-crystalline Ce1x_{1-x}Lax_xOs4_4Sb12_{12} alloys, x=0.02x=0.02 and 0.1, are reported for temperatures down to 20 mK and magnetic fields up to 18 T. At the lowest temperatures, the resistivity of Ce0.98_{0.98}La0.02_{0.02}Os4_4Sb12_{12} has a Fermi-liquid-like temperature variation ρ=ρ0+AT2\rho=\rho_0+A T^2, but with negative AA in small fields. The resistivity has an unusually strong magnetic field dependence for a paramagnetic metal. The 20 mK resistivity increases by 75% between H=0 and 4 T and then decreases by 65% between 4 T and 18 T. Similarly, the AA coefficient increases with the field from -77 to 29μΩ \mu\OmegacmK2^{-2} between H=0 and 7 T and then decreases to 18μΩ \mu\OmegacmK2^{-2} for 18 T. This nontrivial temperature and field variation is attributed to the existence of a very narrow Kondo-hole band in the hybridization gap, which pins the Fermi energy. Due to disorder the Kondo-hole band has localized states close to the band edges. The resistivity for x=0.1x=0.1 has a qualitatively similar behavior to that of x=0.02x=0.02, but with a larger Kondo-hole band

    Anomalous low temperature state of CeOs4Sb12: Magnetic field and La-impurity study

    Full text link
    Specific heat for single crystalline samples of Ce1-xLaxOs4Sb12 at zero-field and magnetic fields to 14 T is reported. Our results confirm enhanced value of the electronic specific heat coefficient in the paramagnetic state. They provide arguments for the intrinsic origin of the 1.1 K anomaly. This transition leads to opening of the gap at the Fermi surface. This low temperature state of CeOs4Sb12 is extremely sensitive to chemical impurities. 2% of La substituted for Ce suppresses the transition and reduces the electronic specific heat coefficient. The magnetic field response of the specific heat is also anomalous.Comment: 4 pages, 3 figure

    Magnetoresistance of Pr1x_{1-x}Lax_xOs4_4Sb12_{12}: Disentangling local crystalline-electric-field physics and lattice effects

    Full text link
    Resistivity measurements were performed on Pr1x_{1-x}Lax_xOs4_4Sb12_{12} single crystals at temperatures down to 20 mK and in fields up to 18 T. The results for dilute-Pr samples (x=0.3x=0.3 and 0.67) are consistent with model calculations performed assuming a singlet crystalline-electric-field (CEF) ground state. The residual resistivity of these crystals features a smeared step centered around 9 T, the predicted crossing field for the lowest CEF levels. The CEF contribution to the magnetoresistance has a weaker-than-calculated dependence on the field direction, suggesting that interactions omitted from the CEF model lead to avoided crossing in the effective levels of the Pr3+^{3+} ion. The dome-shaped magnetoresistance observed for x=0x = 0 and 0.05 cannot be reproduced by the CEF model, and likely results from fluctuations in the field-induced antiferroquadrupolar phase

    Glassy Spin Dynamics in Non-Fermi-Liquid UCu_{5-x}Pd_x, x = 1.0 and 1.5

    Full text link
    Local f-electron spin dynamics in the non-Fermi-liquid heavy-fermion alloys UCu_{5-x}Pd_x, x = 1.0 and 1.5, have been studied using muon spin-lattice relaxation. The sample-averaged asymmetry function Gbar(t) indicates strongly inhomogeneous spin fluctuations, and exhibits the scaling Gbar(t,H) = Gbar(t/H^\gamma) expected from glassy dynamics. At 0.05 K \gamma(x=1.0) = 0.35 \pm 0.1, but \gamma(x=1.5) = 0.7 \pm 0.1. This is in contrast to inelastic neutron scattering results, which yield \gamma = 0.33 for both concentrations. There is no sign of static magnetism \gtrsim 10^{-3} \mu_B/U ion in either material above 0.05 K. Our results strongy suggest that both alloys are quantum spin glasses.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x

    Full text link
    UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type, over a wide range of concentrations from x = 0 to at least x = 2.5. All investigated alloys, with an exception for x = 2.5, were non-magnetic. Their electronic specific heat coefficient γ\gamma varies from about 60 (x = 2) to about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in comparison with normal and transition metals. It changes from about 0.01 (x = 0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5) to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of transition metals to that found for some other heavy-fermion metals. This ratio is unaffected, or only weakly affected, by chemical or crystallographic disorder. It correlates with the paramagnetic Curie-Weiss temperature of the high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe

    High magnetic field phase diagram of PrOs4Sb12

    Full text link
    The magnetic phase diagram of PrOs4_4Sb12_{12} has been investigated by specific heat measurements between 8 and 32 T. A new Schottky anomaly due to excitations between two lowest crystalline-electric-field (CEF) singlets, has been found for both H(100)H \parallel (100) and H(110)H \parallel (110) above the field where the field-induced ordered phase (FIOP) is suppressed. The constructed HTH-T phase diagram shows weak magnetic anisotropy and implies a crossing of the two CEF levels at about 8 - 9 T for both field directions. These results provide an unambiguous evidence for the Γ1\Gamma_1 singlet being the CEF ground state and suggest the level crossing (involving lowest CEF levels) as the driving mechanism of FIOP.Comment: Submitted to Phys. Rev. Let
    corecore